自动驾驶比人靠谱12.5% Waymo整出了数学模型证明
自动驾驶老前辈Waymo发话:我们的AI司机能够规避75%的碰撞事故发生,减少93%的严重受伤,统统高于理想状态下人类司机模型的62.5%和84%。等等,你发现问题没有?如此精确的定量描述自动驾驶安全性,Waymo的依据是什么?
Waymo最新论文的目的,并不是炫耀自动驾驶有多安全,至少不全是。
AEB(主动刹车)成标配,智能汽车喊了很多年。
但各家水准不一,多少时速、什么样的障碍物下AEB或紧急避让生效,才算合格的产品?
Waymo真正的目标是尝试制定一套规范,来定义和评价某个自动驾驶系统是否安全。
以后任何公司说自动驾驶比人类司机更安全,需要用科学的计算体系做支撑,而不是简单笼统地用不同条件下路测和事故情况作比较了。
评价的基准是什么:对人类反应时间进行建模
Waymo的贡献之一在于,他们研究出了一种全新架构模型——以此来对真实道路环境下的司机反应时间进行测量和建模。
其实简单地说,就是通过人类司机应对紧急情况的平均反应时间,来对比一个自动驾驶系统的反应时间。
这种架构,不仅适用于自动驾驶,还可用于其他交通安全领域。
具体来看,该模型基于两大核心观点得来:
第一,为了避免碰撞发生,司机往往会选择刹车或是打方向盘。他们做出这一举动,主要因为当前的交通状况与他们原先所想的不一样,即司机表现出了惊讶。
也就是说,反应时间取决于司机对当前交通状况的预判。惊讶和意外从何时开始,将会直接决定反应时间的长短。
第二,反应时间取决于动态变化的交通环境。并不存在一个放之四海而皆准的固定时间,可以适用于所有不同场景。
举例来说就是,如果你前面的车突然急刹,你就能迅速作出反应;相反,在其他条件都相同的情况下,如果前车缓慢减速,你的反应时间也会相应延长。
需要特别说明的是,这里的反应时间,专指司机决定是否要刹车或转弯的心理过程,不包括后续的规避动作(即打方向盘或踩刹车)。
下图可以更好地解释他们的模型架构。
整个过程概括起来就是认知的转变(belief updating process)。
图中上半部分,司机看到红绿灯后,自然而然产生的想法是前车要刹车减速,事实是前车的确刹车减速了。所以司机的预判是正确的,与事实结果相匹配,在这样的情况下,司机没有出现任何“惊讶”。
图中下半部分,司机原以为前车要继续前行,然而事实是前车突然刹车,这就与他的心理预期不相符合,认知也就出现了迭代更新。
下图可以更进一步解释认知转变的整个过程。
这一模型架构的出现,主要为了解决之前在反应时间建模上存在的两大局限:
1、反应时间过于依赖周围环境;
2、如何对“刺激因素”(stimulus)明确下定义。
Waymo希望能测出在真实道路环境下,面对各种错综复杂的驾驶环境,人类从看到障碍物到踩下刹车的反应时间。
传统方法下,反应时间的分析一般是基于特定可控的实验,而且也不能对常见交通事故下的“刺激因素”何时触发明确下定义。
有了这样较为严谨的反应时间基准模型后,就可以对自动驾驶系统的表现进行评估了。
人类司机作为参考模型
为了评判Waymo他们自己的AI司机表现如何,除了上文提到的反应时间模型,还需要一个标准和参照物。
NIEON应运而生。
它是一个行为参照模型(reference behavior model),是理想状态下的人类司机,名字来源于Non-Impaired Eyes ON the conflict这一串话中每个单词的首字母。
意思就是,NIEON司机不存在智力或听力、视觉上的损伤,它在开车的时候全程保持专注,不会分心开小差,也不会疲劳犯困。
把Waymo他们的AI司机,与NIEON模型对比后,得出的结果是:
在防碰撞反应(collison avoidance effect)里,同时被卷入16起交通事故中,Waymo的自动驾驶系统能够规避12起碰撞发生,即规避概率达到了75%。
注:这里专指防碰撞反应,不包括防止事故发生反应(conflict avoidance effect),意思就是专指你改变轨迹、速度以避免事故的发生/减轻事故的严重性,又或是你失控后重新控制了车辆。
相比之下,理想状态下的NIEON模型,规避了10起碰撞发生,规避概率为62.5%。
与此同时,Waymo的自动驾驶系统,能够减轻93%因碰撞带来的人员重伤发生;NIEON模型只能做到减轻84%。
所以Waymo才得出了结论,说他们的自动驾驶AI司机比人类老司机更安全。
该论文表示,类似于NIEON的行为参考模型,能够被用来作为衡量基准,以此来评判一套ADS自动驾驶的好坏和安全性。
至于测试结果是否可靠,Waymo官方也在论文中谈到了4点局限性。
首先,他们当前使用的数据集,涉及的碰撞事故主要由人引发。当然目前重要的是,要考虑清楚自动驾驶系统如何才能正确应对这些已知的、人类引发的碰撞事故,同时测试好这套系统的能力,以避免类似的行为发生。
其次,该研究仅基于警方报告的碰撞事故进行了模型重建,而官方文件中记录的碰撞事故数量,可能与真实情况存在出入。
第三,当前研究仅基于单个的NIEON模型操作,来评判Waymo他们自动驾驶系统的好坏。
第四,整个自动驾驶系统的表现,是在模拟的环境、不同的条件下进行测试的。如果是一些特定场景的挑战,从严格意义上来说不适用于这个方法。
不为炫耀数据,Waymo这两篇文章有什么意义?
我们从一个最普遍的问题说起:为什么自动驾驶落地困难?
表面上看,是法规不完善,对于自动驾驶车辆权责的划分没有明确。
但我们不妨站在立法机构的角度考虑一下,为什么自动驾驶在如今的L2-L3阶段责任划分不明?
很简单,因为目前的自动驾驶系统还没有完善到“万无一失”,需要人类司机随时准备接管。
而这个接管的时机和条件,从来没有明确。
没有定性、定量的标准界定什么样的情况下人类需要接管系统,自然也就无法在法律上清晰地划分权责。
所以,法规不完善,根源不在立法的滞后性,而是整个自动驾驶行业,从来没有给立法机构提供过能在法理层面行得通的技术标准。
甚至行业通用SAE的L0-L5分级,也是基于对人类干预程度的感性描述,而不是科学严谨的定量描述。
要在法规层面扫清自动驾驶落地的障碍,需要在系统可靠性、道路复杂程度、系统能力边界、人类介入条件、系统失效临界点等等维度,都给出确切、严谨的定义。
Waymo两篇论文,瞄准的正是自动驾驶系统可靠性这个维度,以反应时间为进准,来定量计算自动驾驶系统可靠性。
都说自动驾驶比人类司机可靠,到底有多可靠?
特斯拉以往的话术,是比较美国交管部门对非自动驾驶车辆的事故数量统计,和特斯拉事故数得出的。
但这其中的问题,首先是全美范围路况、车况、事故类型太复杂,远远超出自动驾驶数据库的场景覆盖。
一些人类无法避免的事故,不见得FSD就能避免,只有在相同条件下复现实验,才能下结论。
但这显然是不现实的。这也是特斯拉商业宣传的迷惑性所在。
而Waymo的模型和方法,不敢说一定会成为行业标准,但至少是为自动驾驶安全性界定,开了一个好头。
当然,Waymo这两篇论文还有一层意义那就是再次向公众科普了自动驾驶不等于0事故。
即使是L4、L5这样的高阶自动驾驶系统,仍然有失效的风险。
自动驾驶的意义在于,系统犯错失效的风险比人类更低,就能极大推动社会经济运转效率。
这一点现在有了严谨的证明,也有了立法的依据。
好了,以上就是这两篇论文的亮点部分,如果你想阅读全文,这里也附上链接:
https://waymo.com/intl/zh-cn/safety/
-
中信证券:特斯拉FSD V12即将全面推送 自动驾驶商业化提速
中信证券研报指出,3月26日,马斯克向特斯拉全体员工发送邮件,要求北美员工在交付车辆前安装并激活FSD V12.3.1,为新客户提供FSD试驾体验。与此同时,特斯拉将于本周在北美推出新车限时一个月的F
-
上海东海大桥7月18日起设置自动驾驶测试专用道
7 月 14 日消息,上海交警今天宣布,为保障东海大桥自动驾驶测试车辆与社会车辆行车安全,根据《中华人民共和国道路交通安全法》等相关法律规定,自 2022 年 7 月 18 日起,在东海大桥实施自动驾
-
北京允许自动驾驶车辆“方向盘后无人” 百度首批获准
4月28日消息,北京发放无人化载人示范应用通知书,百度成为首家获准企业,其旗下自动驾驶出行服务平台萝卜快跑正式开启无人化自动驾驶出行服务。有专家表示,在《交通强国建设纲要》背景下,这也是北京积极加大政
关注公众号:拾黑(shiheibook)了解更多
友情链接:
关注数据与安全,洞悉企业级服务市场:https://www.ijiandao.com/
安全、绿色软件下载就上极速下载站:https://www.yaorank.com/
随时掌握互联网精彩